FINDING CUBE ROOTS

x + 9 = 14

Background Solve for the following.

1)
$$x-15=35$$

2)
$$x+10=6$$

3)
$$10x = 125$$

4)
$$\frac{b}{4} = -8$$

On Your Own

1)
$$m+4=-12$$
 2) $15+b=23$

3)
$$k-9=-13$$

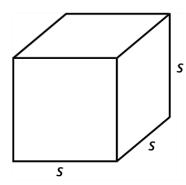
4)
$$n+16=9$$

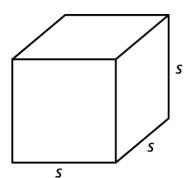
5)
$$14b = -56$$

6)
$$-104 = 8x$$

7)
$$\frac{v}{8} = 2$$

8)
$$-6 = \frac{b}{18}$$


9)
$$16 = \frac{k}{11}$$



Find the edge length of the cube.

1. Volume =
$$64,000 \text{ ft}^3$$

1. Volume =
$$64,000 \text{ ft}^3$$
 2. Volume = $\frac{1}{216} \text{ ft}^3$

Finding Cube Roots

Find each cube root.

a.
$$\sqrt[3]{8}$$

b.
$$\sqrt[3]{-27}$$

c.
$$\sqrt[3]{\frac{1}{64}}$$

Perfect Cubes

Perfect Squares that you should know

13

43

 7^3

 2^3

5³

83

3³

63

93

 10^3

Cube Roots

Perfect Cube Roots that you should know

$$\sqrt[3]{8}$$

$$\sqrt[3]{27}$$

Evaluating with Cube Roots

Evaluate each expression.

a.
$$2\sqrt[3]{-216} - 3$$

b.
$$(\sqrt[3]{125})^3 + 21$$

On Your Own

Find the cube root.

1.
$$\sqrt[3]{1}$$

2.
$$\sqrt[3]{-343}$$

3.
$$\sqrt[3]{-\frac{27}{1000}}$$

Evaluate the expression.

4.
$$18 - 4\sqrt[3]{8}$$

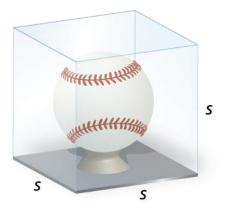
5.
$$(\sqrt[3]{-64})^3 + 43$$
 6. $5\sqrt[3]{512} - 19$

6.
$$5\sqrt[3]{512} - 19$$

Evaluating with Cube Roots

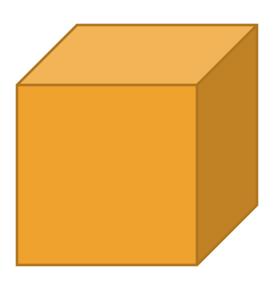
Evaluate
$$\frac{x}{4} + \sqrt[3]{\frac{x}{3}}$$
 when $x = 192$.

On Your Own


Evaluate the expression for the given value of the variable.

7.
$$\sqrt[3]{8y} + y$$
, $y = 64$

8.
$$2b - \sqrt[3]{9b}$$
, $b = -3$


Critical Thinking...

Find the surface area of the baseball display case.

With Your Partner

9. The volume of a music box that is shaped like a cube is 512 cubic centimeters. Find the surface area of the music box.

Did You Understand?

Explain the difference between $\sqrt{64}$ and $\sqrt[3]{64}$.